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Delaunay-based derivative-free optimization leveraging global surrogates (∆-DOGS) is a recently-
developed optimization algorithm designed for nonsmooth functions in a handful of adjustable pa-
rameters. The first implementation of the original ∆-DOGS algorithm used polyharmonic splines to
develop an inexpensive interpolating “surrogate” of the (expensive) function of interest. The behavior
of this surrogate was found to be irregular in cases for which the function of interest turned out to be
much more strongly dependent on some of the adjustable parameters than others. This irregularity
of the surrogate led to the optimization algorithm requiring many more function evaluations than
might have otherwise been necessary. In the present work, a modified interpolation strategy, dubbed
multivariate adaptive polyharmonic splines (MAPS), is proposed to mitigate this irregular behavior,
thereby accelerating the convergence of ∆-DOGS. The MAPS approach modifies the natural poly-
harmonic spline (NPS) approach by rescaling the parameters according to their significance in the
optimization problem based on the data available at each iteration. This regularization of the NPS
approach ultimately reduces the number of function evaluations required by ∆-DOGS to achieve a
specified level of convergence in optimization problems characterized by parameters of varying de-
grees of significance. The importance of this rescaling of the parameters during the interpolation step
is problem specific. To quantify its beneficial impact on a practical problem, we compare ∆-DOGS
with MAPS to ∆-DOGS with NPS on an application related to hydrofoil shape optimization in seven
parameters; results indicate a notable acceleration of convergence leveraging the MAPS approach.

I. Introduction
Factors contributing to the choice of an algorithm for optimizing a function f(x) include the cost of computing

f(x), the local smoothness of f(x), the availability of derivative information, the number of design parameters, and
the shape of the feasible domain considered in parameter space. This paper considers simulation-based optimization
problems for which the cost of computing f(x) is high, f(x) may be locally nonsmooth, and derivative information
may be unavailable, but the number of design parameters is relatively low (say, n . 10), and the feasible domain in
parameter space is a simple convex region bounded by linear inequality constraints.

Over the last thirty years, as computational power has increased, derivative-free optimization algorithms have
become increasingly valuable for shape optimization leveraging commercial off-the-shelf (COTS) computer-aided
design (CAD) tools. Response surface methods [28] are perhaps the most computationally efficient derivative-free
approaches available for shape optimization problems today, with recent applications including the design of helicopter
blades and airfoils [14, 16, 30].

Response surface methods use a computationally inexpensive model, p(x), of the (computationally expensive)
function of interest, f(x), to approximate the trends evident in the data available at each iteration. Correlation-based
interpolation models [6, 7, 8, 31] have been widely used in such methods as surrogates to model the underlying function
f(x), and simultaneously to model the uncertainty associated with this surrogate. A method of this class considers
the objective function as a “realization of a random process”, and the parameters of the statistical model inherent to
the method are tuned, using a maximum likelihood approach, to maximize the probability of the observed data at
each iteration. Unlike polyharmonic spline interpolation, no metric of smoothness of the interpolant is minimized in
correlation-based interpolation strategies. Thus, surrogates developed using such strategies are sometimes nonsmooth
(see, e.g., the appendix of [13]), which can significantly decrease the convergence rate of the associated optimization
algorithm [17, 27, 34].

The recently-developed Delaunay-based derivative-free optimization via global surrogates (∆-DOGS) family of
methods [2, 3, 4, 9, 10, 11, 12, 13] are response surface methods which are built upon the framework of a Delaunay
triangulation of the available datapoints at each iteration. These methods are provably globally convergent under the
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appropriate assumptions, and are found to be remarkably computationally efficient on a range of benchmark as well
as application-based problems.

As with other response surface methods, algorithms in the ∆-DOGS family iteratively minimize a search function
s(x) based on both an interpolation of the existing datapoints as well as a model of the uncertainty of this interpolant.
Significantly, methods in the ∆-DOGS family decouple the tasks of interpolation and uncertainty modeling. A simple
synthetic uncertainty model is used which is zero at each datapoint and piecewise quadratic within each simplex;
this approach proves to be both effective and easy to generalize (see [2, 10]). The present paper introduces and
demonstrates a new interpolation approach that is well suited for optimization algorithms in this family.

In previous implementations of optimization algorithms in the ∆-DOGS family [2, 3, 4, 5, 10, 11, 12, 13], the natu-
ral polyharmonic spline (NPS) interpolation approach was used. Applications included hydrofoil design optimization
[29]; in this particular application, though satisfactory results were ultimately achieved, a non-uniform dependence
of f(x) on the design parameters x over the parameter space considered was observed, as well an associated (yet,
unanticipated) irregularity of the associated NPS interpolants used at each iteration.

The present paper specifically addresses these shortcomings by introducing a new interpolation strategy, dubbed
multivariate adaptive polyharmonic splines (MAPS) which, prior to performing the interpolation at each iteration,
rescales the coordinate directions of the domain based on the observed variation of the available data in each direction.
The hydrofoil optimization problem described in [29] represents a typical challenge problem for this effort, as its
objective function f(x), which characterizes the lift/drag ratio of the foil, is much more strongly dependent on some
of the design parameters than others. This behavior is common in shape optimization.

The present paper specifically employs MAPS in the Delaunay-based optimization strategy developed in [3]. For
comparison, ∆-DOGS with MAPS and ∆-DOGS with NPS are both applied to the hydrofoil optimization problem
developed in [29].

The structure of the paper is as follows: Section II briefly reviews the essential ideas of Delaunay-based opti-
mization (∆-DOGS) with acceleration based on Cartesian grids. Section III introduces our new interpolation strategy,
MAPS, which automatically scales the parameter space prior to performing each interpolation, thereby regularizing
the interpolant and, ultimately, accelerating convergence. Section IV applies the new interpolation strategy within
∆-DOGS to optimize a high-performance sailboat hydrofoil design. Some conclusions are presented in Section V.

II. A brief review of ∆-DOGS
Algorithms in the ∆-DOGS family are already well suited for many low-dimensional shape optimization problems.

In this paper, we consider specifically the optimization of a nonconvex objective function f(x) inside a convex feasible
domain bounded by linear constraints:

minimize f(x) with x ∈ Ω = {x ∈ Rn|Ax ≤ b}, (1)

where x ∈ Rn, f : Rn → R, and the feasible domain Ω is assumed to be compact (closed and bounded). The
compactness assumption guarantees that there is at least one solution of (1).

Algorithms of the ∆-DOGS family attempt to solve (1) using successive function evaluations at feasible points
xk ∈ Ω in search of the global minimum of f(x) for x ∈ Ω. To accomplish this efficiently, a search function s(x)
is minimized at each iteration; this search function is built using an interpolation of the existing datapoints, p(x), a
synthetic model of the uncertainty of this interpolant, e(x), and a target value for the function itself, y0.

In this work, we assume that a target value y0 is known which is achievable, and the goal is to find a point x∗

such that f(x∗) ≤ y0. The interpolation and the uncertainty function at each iteration k are denoted pk(x) and ek(x),
respectively. The uncertainty function and the search function are defined as follows.

Definition II.1. Take S as a set of points that includes the vertices of domain Ω, and ∆ as a Delaunay triangulation of
S. The local uncertainty function ei(x) for each simplex ∆i ∈ ∆ is defined

ei(x) = r2
i − ‖x− Zi‖2, (2)

where ri and Zi are the circumradius and circumcenter of ∆i. The global uncertainty function e(x) is defined

e(x) = ei(x), for all x ∈ ∆i. (3)

The uncertainty function e(x) is illustrated in Figure 1 in a parameter space of dimension n = 2. The uncertainty
function e(x) is characterized by the following useful properties:

1. the uncertainty function e(x) is non-negative e(x) ≥ 0 for all points x ∈ Ω, and e(x) = 0 for all x ∈ S,

2 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Fe
br

ua
ry

 8
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
01

29
 



0

0

00.2

0.1

0.4

0.50.6

0.2

0.8

0.3

1 1

Figure 1: Illustration of the uncertainty function e(x) in n = 2 dimensions.

2. the uncertainty function e(x) is continuous, Lipschitz, and piecewise quadratic.

3. the uncertainty function e(x) is everywhere equal to the maximum of the local uncertainty functions ei(x); i.e.,

e(x) = max
1≤i≤|∆|

ei(x) for all x ∈ ∆. (4)

A number of additional useful properties of e(x) are established in Lemmas [2:5] of [13].

Using the uncertainty function e(x) and a suitable interpolation p(x) of the available data, the search function s(x)
is defined as follows.

Definition II.2. Take S as a set of datapoints that includes the vertices of the domain Ω, ∆ as a Delaunay triangulation
of S, p(x) as an interpolation of the function f(x) over S, and e(x) as the global uncertainty function defined in (3)
and built on the framework of ∆. The global search function s(x) is defined as follows:

s(x) =


p(x)− y0

e(x)
, if p(x) ≤ y0,

p(x)− y0, otherwise,
(5)

where y0 is the target value of f(x) (that is, an estimate of its lower bound).

Based on the constructions given above, the essential steps of ∆-DOGS are given in Algorithm 1. Figure 2
illustrates one iteration of ∆-DOGS on an representative problem.

One of the challenges of the basic ∆-DOGS algorithm [13] is its overexploration of the boundaries of feasibility.
This issue may be addressed by using a Cartesian grid [11] or, more generally, a dense lattice [3] to help coordinate the
search, and successively refining this grid or lattice as convergence is approached. These coordination steps are useful
for minimizing the accumulation of function evaluations along the boundary of the feasible domain, though they must
be implemented with care. The particular variant of the ∆-DOGS optimization algorithm that is used in the present
work is that described in [3], which modifies the basic ∆-DOGS algorithm to coordinate the search with lattices
over Ω and ∂Ω that are successively refined as convergence is approached. The technical details of the modifications
necessary to implement this idea correctly are somewhat involved, and discussed in detail in [3, 11], together with
formal proofs of convergence and illustration on model problems.

One of the parameters that is essential for accelerating the convergence of the ∆-DOGS algorithm is the estimate
of the lower bound of the objective function, y0, over the feasible domain Ω. It is shown in [13] that, if y0 ≤ f(x∗),
convergence to the global minimum is guaranteed for any twice differentiable function f(x); however, values of y0

for which y0 � f(x∗) tend to reduce the convergence rate. If y0 > f(x∗), the algorithm will stop at some feasible
point x̃ ∈ Ω such that f(x̃) ≤ y0; in this case, convergence to the global minimum is not guaranteed.
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p(x)
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e(x)

y0

 a)

  

x̂
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 b)

  

Figure 2: The essential elements of ∆-DOGS. Subfigure a) indicates (black solid) the truth function f(x), (green
dot-dashed) the target value y0, (blue dashed) the interpolating surrogate function p(x), (red solid) the synthetic model
of the uncertainty e(x), and (black squares) the datapoints. Subfigure b) indicates the search function s(x), defined in
(5), and (blue squares) the minimizer x̂ of the search function.

Algorithm 1 The essential steps of ∆-DOGS.

1: Set k = 0. Take the set of initialization points S0 as all M of the vertices of the feasible domain L.
2: Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through all points in Sk.
3: Calculate (or, for k > 0, update) a Delaunay triangulation ∆k over all of the points in Sk.
4: Find xk as a global minimizer of sk(x) in Ω to obtain xk.

x̂k = argminx sk(x) subject to x ∈ Ω.

5: Calculate f(x) at x̂k, and take Sk+1 = Sk ∪ xk. Repeat from 2 until convergence.

Another important factor affecting the performance of ∆-DOGS algorithms is the choice of the interpolation strat-
egy used. As mentioned previously, algorithms in the ∆-DOGS family can leverage any well-behaved interpolation
strategy. In the previous implementations of ∆-DOGS, natural polyharmonic spline (NPS) interpolation has been used.
The ultimate performance of ∆-DOGS algorithms depends strongly on the smoothness of the interpolations used. In
some situations (specifically, when the variation of the function f(x) with respect to the parameters is nonuniform,
with much stronger variation in some coordinate directions than others), it is has been found that NPS interpolants are
not sufficiently smooth. In the section that follows, we thus introduce a new interpolation method that rescales the pa-
rameter domain appropriately while performing the interpolation, thus developing a significantly smoother interpolant
(and thereby, ultimately, accelerating convergence of the associated optimization algorithm).

III. A new polyharmonic spline interpolation algorithm for ∆-DOGS
As discussed above, the choice of the strategy to be used to construct the interpolant p(x) is subtle, and strongly

affects the rate of convergence of the associated optimization algorithm. Natural polyharmonic spline (NPS) inter-
polation is, in general, one of the most popular interpolation strategies available today, as its formulation specifically
minimizes a metric measuring the curvature of the resulting interpolant. Numerical experiments in [13] showed that
NPS interpolation is fairly well behaved, as compared with Kriging-based approaches, even when the available data-
points are clustered in various distinct regions of parameter space. Note also that NPS interpolation has also been used
in various response surface methods developed by other groups, including [27, 34].

Appropriate rescaling of parameter space is a valuable step in numerical optimization, and various recent papers
have attempted to address the rescaling issue in the optimization setting. In the numerical optimization literature, there
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are two main approaches taken for the automatic rescaling of parameter spacea. The first approach (see, e.g., [18])
is to use a correlation-based model to develop the interpolant, as discussed in the third paragraph of the introduction;
such approaches naturally solve for correlation length scales during the computation of the interpolant via a maximum
likelihood formulation, but do not guarantee smoothness of the resulting interpolant. The second approach (see, e.g.,
[1]) uses a statistical method to identify the variation of the function with respect to each parameter in the available
dataset, and uses this statistical information to rescale the parameters prior to performing the interpolation at each
iteration. This approach works well if the data that is used for this sensitivity analysis is well-distributed over the
feasible domain; however, during the optimization processes, the dataset is expected to become clustered in some
regions of the feasible domain while remaining sparse in others, which renders this rescaling approach unreliable.

In the following two sections, we first review NPS, then develop and analyze our new interpolation strategy,
dubbed MAPS, which includes, during the interpolation process, an automatic rescaling of the parameters based on
the available data.

A. Natural polyharmonic spline (NPS)
Polyharmonic spline interpolation is a widely-used strategy to interpolate scattered data in multiple dimensions [23,
33]. An interpolant p(x) is defined as a smooth function, which is typically inexpensive to compute, which models a
“truth” function f(x), which might be expensive to compute, such that

p(xi) = f(xi) for i = 1, . . . , N. (6)

To maximize the smoothness of p(x), it is suggested in [33] that the following term should be minimized∫
Ω

‖∇m p(x)‖22 dx, (7)

subject to p(xi) = f(xi), ∀i = 1, . . . , N , where m is an integer such that m ≤ N . Under these conditions, the
minimizer of (7) gives a polyharmonic spline interpolant [33]. By choosing m = 2 in (7), the resulting interpolant
will be contained in the Beppo-Livi space of distributions on Rn with square integrable second derivatives [15]; this
choice is termed natural polyharmonic spline (NPS) interpolation, and is by far the most common choice in this class.

NPS may be defined as a combination of a weighted sum of a set of radial basis functions ϕ(r) built around the
location of each evaluation point, {xi}Ni=1, and a linear function of x:

p(x) =

N∑
i=1

wi ϕ(||x− xi||) + vT
[

1
x

]
. (8)

The coefficients wi and vi are real numbers in which vi represent the coefficients of a linear polynomial.
The following orthogonality conditions are applied:

N∑
i=1

wi = 0,

N∑
i=1

wi xi` = 0 ∀ ` = 1, 2, . . . , n; (9)

this imposes n + 1 constraints, coupled with the interpolation condition (6), which imposes N constraints, gives the
linear system (10) below, from which one can solveb for the parameters w and v in the NPS interpolation formula (8):[

F V T

V 0

] [
w
v

]
=

[
f(xi)

0

]
(10a)

where

Fi,j = ϕ(||xi − xj ||), i, j = 1, . . . , N, (10b)

and ϕ(r) = r3, r = ‖x− xi‖, V =

[
1 1 . . . 1
x1 x2 . . . xN

]
. (10c)

The solution of the above linear system is unique [33]. Thus, by solving the linear system (10), the coefficients w and
v are found, and p(x) is determined.

aThe two approaches described here may be considered specifically for the problem of dimension reduction; that is, for the exploration of f(x)
over a reduced number of parameters during certain steps of the optimization algorithm. This possibility will be explored in the present setting in a
future paper.

bThe reader is encouraged to read about the details associated with efficiently finding these weights as described in [33].
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a) Error contour for the NPS interpolant (8).
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b) Error contour for the MAPS interpolant (11).
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c) Blue dashed: MAPS interpolant. Black dashed: NPS interpolant. Black solid: truth function f(x).
Red ×: available datapoints. Top figure: f(x1, 0.45) v.s. x1. Bottom figure: f(0.45, x2) v.s. x2.

Figure 3: Behavior of NPS and MAPS interpolants, based on the datapoints marked, with respect to the truth function
f(x) = 0.01 (x1 − 0.45)2 + (x2 − 0.45)2, shown solid. Across the domain [0, 1] in each coordinate direction, the
variation of f(x) in the x2 direction is 1000 times stronger than the variation of f(x) in the x1 direction; i.e., f(x)
is much more sensitive to x2 than it is to x1. In (a) and (b), the deviation of the interpolants p(x) from the truth
f(x) is quantified; using NPS, as seen in (a), creates deviations in the x1 (vertical) direction that are absent using the
MAPS approach, as seen in (b). These deviations reduce the convergence rate of the associated optimization. In (c),
the behavior of MAPS, NPS, and the truth f(x) are plotted with respect to x1 and x2 across the center of the domain.

The natural polyharmonic spline interpolation formula in (8) has various shortcomings, the most significant of
which is the ill conditioning of the linear system (10) that is solved to fit the polyharmonic spline to the datapoints.
This stiffness is a direct result of the function f(x) having a nonuniform variation in the design parameters. The
result of this stiffness is spurious oscillations of the resulting interpolant in coordinate directions with less pronounced
variation of f(x). Figure 3 illustrates this behaviour for a representative problem, and compares with the outcome of
the new interpolation strategy proposed below.
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B. Multivariate adaptive polyharmonic splines (MAPS)
Consider now an interpolant of the form:

ps(x) =

N∑
i=1

wi ϕ(a⊗ ‖x− xi‖) + vT
[

1
x

]
, (11)

where ϕ(a⊗ r) := (a⊗ r)3 and a⊗ r :=

n∑
`=1

a` r`,

where the a` are scaling parameters, and inherent functions of w and v. The following condition is imposed:
n∑
`=1

a2
` = n. (12)

Unfortunately, the quadratic constraint (12) is more challenging than a linear constraint from the perspective of opti-
mizing the weights. Thus, (12) is restated as a linear constraint using the change of variables θ` = a2

` :
n∑
`=1

θ` = n, where θ` ≥ 0. (13)

The formulation developed below thus works with θ instead of a. The problem of computing a MAPS interpolant thus
reduces to the problem of solving for the variables

X = (w1 . . . , wN , v1, . . . , vn+1, θ1, . . . , θn)T .

In contrast with the NPS interpolation formula (8), which has N + n+ 1 unknowns, the MAPS interpolation formula
(11) has N + 2n+ 1 unknowns. With the additional n degrees of freedom (i.e., the scaling parameters θ`) in MAPS,
a wider range of parameters is used in order to obtain a smoother interpolant.

To improve the convergence of ∆-DOGS, we desire to use smooth interpolants at each iteration. We achieve this
in the present context by performing minimum Frobenius norm (MFN) interpolations. In an MFN formulation, the
Hessian of the interpolant, ∇2 ps(x), is minimized by minimizing the L2-norm of the vector w [21, 17]. The scaling
θ could thus, in theory, be optimally tuned by solving

min
w,v,θ

N∑
i=1

w2
i ,

subject to
n∑
`=1

θ` = n, θ` ≥ 0, ` = 1, 2, . . . , n,

N∑
i=1

wi = 0,

N∑
i=1

wi xi` = 0, ` = 1, 2, . . . , n,

ps(xi) = f(xi), i = 1, 2, . . . , N.

(14)

The above optimization problem is nonconvex, however, as the last constraint above is a nonlinear function of θ. For
a fixed value of θ, this constraint is satisfied by solving a linear system, and the resulting objective function may be
rewritten as:

Q(θ) := bT A(θ)−T LA(θ)−1 b =

N∑
i=1

w2
i , (15a)

where

L =

[
I 0
0 0

]
, A(θ) =

[
F (θ) V T

V 0

]
, b =

[
f(xi)

0

]
, (15b)

noting that

F (θ)i,j = ϕ
(
‖(xi − xj)‖θ

)
, i, j = 1, . . . , N, (15c)

where ϕ(r) := r3 and ‖r‖θ :=
( n∑
`=1

θ` r
2
`

)1/2

, V =

[
1 1 . . . 1
x1 x2 . . . xN

]
. (15d)
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Algorithm 2 Scheme to find the scaling parameters of MAPS (11)

1: Set j = 0. Take the set of initialization points S0 and consider λ0, θ` = 1 for all ` = 1, 2, . . . , n.
2: For j > 0, initialize the following system by θ0 ← θλj−1

with fixed λj
3: Find θλj by solving the quadratic programming

θλj = min
θ∈Rn

Qλj (θ) subject to 1T θ = n, 0 ≤ θ ≤ n,

4: Update λj+1 ← λj/2, increment j by one, and repeat from step 2 until (19) is satisfied.

The optimum scaling parameter θ∗ can thus be found using an appropriate sequential quadratic programming
(SQP) solver (see, e.g., [26]), with the Hessian approximated using BFGS:

θ∗ = min
θ∈Rn

Qj(θ) subject to 1T θ = n, θ ≥ 0. (16)

The main challenge in minimizing Q(θ) is the singularity of A(θ) as one of the elements of the vector θ approaches
zero. This issue is illustrated for a simple quadratic problem in Figure 12 (see Appendix), which illustrates that there is
a significant deviation in the value of Q(θ) as determined via SQP applied to (15), when compared with the optimum
value of Q(θ), as one of the scaling parameters θ` → 0. It is seen that the SQP approach tends to get caught in a
local minimum for small θ`. This is a common situation, especially when the actual variation of the objective function
with respect to some of the parameters is small. To address this issue, a series of new problems Qλj (θ) is defined and
iteratively minimized as the relaxation parameter λj is gradually decreased towards zero:

Qλ(θ) = bT (Aλ(θ))−T L (Aλ(θ))−1 b, where Aλ(θ) = A(θ) + λL. (17)

Note that, as λ → 0, (15) is recovered from (17). To minimize Qλ(θ) efficiently, for any given λ, we need the
following derivative information:

dQλ(θ)

d θ`
= 2BT` (θ)LW (θ), (18a)

Aλ(θ)B`(θ) = −∂ Aλ(θ)

∂ θ`
W (θ), (18b)

Aλ(θ)W (θ) = b where W (θ) =

[
w
v

]
, (18c)

whereAλ(θ) is defined in (17) and L, b,A(θ) are defined in (15b). Having this information on the derivative ofQλ(θ),
we may use the BFGS method to minimize it. It is known (see, e.g., [22, 32]) that such a procedure will converge
to a local minimum of (14). As codified in Algorithm 2, by performing a set of relaxations towards the solutionc,
for successively smaller values of λ, it is found that reliable convergence to the desired (global) minimum of (14) is
obtained; this optimized value of θ may then be used in the MAPS interpolation strategy (11).

Step 3 of Algorithm 2 can be solved using, e.g., the SNOPT optimization package [26], given the function of
interest, Qλj (θ), as in (17), and the gradient information, dQλj (θ)/d θ`, as in (18), at each iteration k. The initial
value of the relaxation parameter in Algorithm 2, λ0, must be sufficiently large to give a well-conditioned linear
system. To determine an appropriate stopping condition in this relaxation, define first the interpolation error δyi over
all points xi for a given λj :

δyi = f(xi)− ps(xi; θλj ).

In addition, define the distance between the value of the objective function at xi and the target value y0 as

∆yi = f(xi)− y0.

An effective stopping criteria is reached when the error of interpolation, δyi, reduces to, say, less than 10% of ∆yi at
each datapoint xi; that is,

δyi
∆yi

< 0.1 for all i = 1, 2, . . . , N. (19)

cNote that the initial point for minimizing Qλj+1
(θ) is the minimizer of Qλj (θ) (see step 2 of Algorithm 2).
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δyi

ps(x)

f(x)

xi

y0 ∆yi

a) MAPS interpolant failing to satisfy (19) for some points xi (be-
fore λ is made sufficiently small).

δyi ≈ 0

∆yi

f(x)

y0

ps(x)

xi

b) MAPS interpolant satisfying (19) for all points xi (once λ is
made sufficiently small).

Figure 4: Illustration of the termination condition (19) for the refinement of λ in Algorithm 2.

After a finite number of refinements j of Algorithm 2, the stopping criterion (19) will be satisfied. An important
observation is that, for the initial iterations of ∆-DOGS, since ∆yi is large, (19) is satisfied even for relatively large
values of λj . As ∆-DOGS proceeds, ∆yi becomes smaller, which necessitates an increased number of refinements
of λj to make δyi sufficiently small to satisfy (19) at all points xi, thus driving the MAPS surrogate towards a true
interpolant as convergence is approached.

IV. Implementation of ∆-DOGS with both MAPS and NPS on hydrofoil design
For validation purposes, Algorithm 1 was applied to the hydrofoil optimization problem considered in detail in

[29], using both NPS (8) and MAPS (11).
In [29], the shape of a racing catamaran’s hydrofoil was characterized by 7 design parameters, and ∆-DOGS(C)

with NPS was used to maximize the hydrofoil efficiency, defined as its lift/drag ratio, at a fixed working condition.
During the optimization, two specific challenges were encountered: (a) ∆-DOGS apparently overexplored the func-
tion f(x) near the boundary of feasibility, Ω, due in part to the fact that the objective function f(x) itself had somewhat
irregular behavior close to the boundary of Ω, and (b) the non-uniform dependence of the objective function f(x) on
the various design parameters x apparently resulted in overexploration of f(x) in the vicinity of the optimizated so-
lution. These challenges resulted in many apparently unnecessary function evaluations during the optimization. The
issue described in (a) above was resolved well in [3, 11] by leveraging a grid or lattice in ∆-DOGS to help coordinate
the search. In the following, we incorporate MAPS interpolation (11) in ∆-DOGS to resolve issue (b).

In our previous work on the hydrofoil optimization problem [29], we observed that the objective function f(x)
depended much more strongly on some design parameters than others. This nonuniform dependence on the 7 design
parametersd in the vicinity of the optimum solution is shown in Figure 5, where the stars indicate the optimum values
of each parameter, and the red line indicates the variation in the efficiency of the foil as one of the parameters at a time
is varied over its full range.

Simulation results (see Figure 8) indicate that, after about 30 function evaluations, the optimization algorithm
approaches the optimal solution in the present problem, with a lift/drag ratio of about 36.

As mentioned previously (in particular, see Figure 3), spurious oscillations caused by nonuniform interpolants
can be problematical in such optimization problems, significantly slowing convergence. We illustrate this issue by
comparing NPS (Figure 6, bottom) and MAPS (Figure 6, top) interpolations of the data given by the optimum solution
x∗ together with the first 30 datapoints generated by Algorithm 1. The NPS interpolant is characterized by spurious
peaks away from the optimal point, in both the x1 and x2 coordinate directions. These spurious peaks in the x1 and
x2 coordinate directions are absent in the MAPS interpolant, which much more accurately captures the trends evident
in the truth function itself (see Figure 5); this is remarkable, given that the interpolation is based on only 31 datapoints
in a practical 7-dimensional problem.

We now summarize the design parameters used in this work, as suggested by [29], which represent a rectangular
hydrofoil with an aspect ratio (AR) of 10 and a cross section of a NACA641−412 foil. The optimization is performed
to minimize the drag of the foil subject to a design vertical and horizontal lift of SCz = 0.120 and SCy = 0.066.

dNote that, to ease the visualization, all of the design parameters are normalized to lie between 0 and 1.
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Figure 5: Nonuniform dependence, over the parameter space considered, of the objective function (i.e., the lift/drag
ratio of the hydrofoil) on the 7 adjustable parameters defining the hydrofoil shape (see Table 1 and Figure 7). The
stars indicate the optimal values, x∗` , of each of the 7 parameters of the foil. The red line indicates the variation in the
efficiency of the foil when 6 of the parameters are held at their optimal values, and 1 of the parameters at a time is
varied over its full range.

Table 1: Summary of the adjustable parameters used in the hydrofoil shape design problem.

Number (j) Variable xj Description lower bound upper bound
1 S planform surface 0.2 0.5
2 z1 rational Bezier curve 0.5 1.5
3 dy rational Bezier curve 0.5 1.5
4 dz rational Bezier curve -0.3 0.3
5 w1 vertical plane weight 4.3 11
6 ctip tip chord length 0.05 0.5
7 wc weight spanwise 1.5 11

Figure 7 shows the geometry of the foil, where z is the vertical coordinate, y is the horizontal cross-flow coordinate,
x is the horizontal stream-wise coordinate, s is the curvilinear coordinate, and S is the planform area. Other parameters
of the optimization govern the y− z plan and the chord distribution along the curvilinear coordinate s. Both the shape
of the foils’ quarter-chord line and the chord distribution are represented using Bezier curves, where the wi are the
weights of the corresponding control points (for details, see [29]). In this manner, a realizable foil is characterized
efficiently with only seven parameters subject to simple bound constraints, as listed in Table 1.

In this work, as suggested by and validated in [29], AVL [20] has been used to calculate the lift/drag of a foil.
AVL is an easy-to-use vortex-lattice-based software package for inviscid aerodynamic analysis problems of this sort.
The estimate of the optimal objective function value, y0 = max (CL/CD), can be obtained by classical aerodynamic
analysis. The drag coefficient can be obtained as the sum of the viscous and inviscid (3D) drag components. For a foil
with a specified aspect ratio of AR and an elliptic spanwise load, it can be estimated as follows:

CD = CDν (CL) +
C2
L

π AR
, (20)

where CDν (CL) is the viscous drag coefficient, which can be determined for a given 2D foil section either via an
experiment or a 2D computational model, such as XFoil [19]. Following the detailed analysis in [29], a value of
y0 = 37 is used in the present work.

A. Optimization results and comparison
The optimization process balances the contribution of the viscous drag, proportional to the foil surface, and the inviscid
drag, proportional to the square of the lift surface. The objective function f(x) used is the lift/drag ratio. We actually
minimize log[1 + 1/f(x)], instead of maximizing the efficiency of the foil f(x) itself, since Algorithm 1 is designed
for minimization problems. Note that the plots provided in this paper show f(x), for ease of interpretation.

By switching from ∆-DOGS(C) with NPS to lattice-based ∆-DOGS with MAPS interpolation, the numerical
results in Figure 8 indicate a significant improvement in the objective function value, f(x), after a fixed number
of function evaluations. Implementing lattice-based ∆-DOGS with NPS improves the coverage speed as compared
with ∆-DOGS(C) with NPS. After only 33 function evaluations, lattice-based ∆-DOGS with NPS finds a solution
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a) MAPS
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b) NPS

Figure 6: Performance of MAPS v.s. NPS give the first 30 datapoints generated using Algorithm 1 with NPS as well
as the optimum solution x∗. Vertical axis: interpolant value for the efficiency of the foil with respect to the seven
adjustable parameters. Horizontal axis: normalized design parameters listed in Table 1. a): multivariate adaptive
polyharmonic spline (MAPS) surrogate (11). b): natural polyharmonic spline (NPS) surrogate (8).
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Figure 7: The optimization design parameters listed in Table 1 (see [29] for details of parametrization).

with a lift/drag ratio of 36; convergence to this level required 100 function evaluations using ∆-DOGS(C) with NPS.
Moreover, using lattice-based ∆-DOGS with MAPS, a lift/drag ratio of 36 is achieved in only 26 function evaluations.
That is, lattice-based ∆-DOGS with MAPS has 74% improvement compared to the ∆-DOGS(C) with NPS, and a 21%
enhancement compared to lattice-based ∆-DOGS with NPS. Furthermore, after 55 function evaluations, lattice-based
∆-DOGS with MAPS found a solution with a lift/drag ratio of 36.89; on the other hand, [29] reported 160 function
evaluations to reach a maximum lift/drag ratio of 36.81. Table 2 shows the optimized parameters of the hydrofoil
design as computed in this paper, after various numbers of iterations, and in [29].

An important observations is that dy, the total length of the foil, reaches its maximum possible value in the
optimized result. Intuition also suggests that, by increasing the foil aspect ratio, the foil efficiency will increase.

It can be seen in Figure 10 (top plot) that variables y2 and z2 do not vary after 30 function evaluations. This
indicates it would be beneficial to project the optimization problem to a lower-dimensional parameter space, and to
solve the optimization problem in that reduced parameter space. This idea, directly leveraging the MAPS formulation,

11 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Fe
br

ua
ry

 8
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
01

29
 



Table 2: Comparison between the results reported in [29] using ∆-DOGS(C) with NPS and lattice-based ∆-DOGS
with MAPS for dy < 1.50.

variable parameter [29] (200 iterations) 40 iterations 80 iterations 200 iterations 269 iterations
x1 S 0.305 0.305 0.305 0.297 0.303
x2 z1 0.89 0.900 0.875 0.862 0.881
x3 dy 1.50 1.500 1.500 1.500 1.500
x4 dz -0.29 -0.300 -0.300 -0.300 -0.300
x5 w1 7.25 7.250 10.09 7.060 9.377
x6 ctip 0.21 0.163 0.129 0.100 0.050
x7 wc 2.58 2.896 2.896 2.814 3.220
f(x) CL/CD 36.81 36.807 36.890 36.897 36.993

0 10 20 30 40
0

10

20

30

38

iteration

C
L
/
C

D

1

Figure 8: Solid lines show the best lift-drag ratio CL/CD at constant lift during the optimization: Blue curves illus-
trate the convergence of lattice-based ∆-DOGS using MAPS, Black curves illustrate the convergence of lattice-based
∆-DOGS using NPS, and Magenta curves illustrate the convergence of ∆-DOGS(C) using NPS [10], as originally
reported in [29]. In all three cases, the point generated by ∆-DOGS at each iteration is shown by dotted curves.

will be investigated in future work.
Convergence histories for the values of the optimized design parameters, using ∆-DOGS(C) with NPS [29] and

lattice-based ∆-DOGS with MAPS, are shown in Figure 10. The designs achieved by both algorithms are illustrated
in Figure 9. The final solutions obtained using both methods, illustrated in Figure 11, are quite similar. However,
Figure 9a shows that the optimized design is found faster than in Figure 9b. These trends are also evident in Figure 10
and Figure 8.

V. Conclusions
This paper presents a new interpolation strategy, multivariate adaptive polyharmonic spline (MAPS), for regu-

larizing the interpolant used in response surface methods for derivative-free optimization. We have demonstrated
that MAPS significantly accelerates the convergence rate of our own family of response surface methods, dubbed
∆-DOGS, when applied to practical design optimization problems of engineering interest.

MAPS is an interpolation strategy in the family of radial basis functions that rescales parameter space, based on
the available data generated by an optimization algorithm, in order to reduce the spurious oscillations in the resulting
interpolant. In the present work, MAPS is implemented in the ∆-DOGS family of optimization algorithms, and its
performance is tested on a simulation-based shape design optimization problem to maximize the lift/drag ratio of a
hydrofoil design. Results indicate fewer function evaluations are required following the new approach to achieve a
given level of convergence. An improved method of coordinating the search with lattices is also introduced and shown
to be effective.

A limitation of the interpolation strategy developed in this work is that its computational expense increases as the
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a) lattice-based ∆-DOGS with MAPS
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b) ∆-DOGS(C) with NPS

Figure 9: The first 200 evaluated foil geometries in the optimization algorithms: a) lattice-based ∆-DOGS [3] with
MAPS. b) ∆-DOGS(C) with NPS [29]. The optimized geometry is shown by a thick curve in both figures.

number of data points increases, since at each iteration it needs to solve an optimization problem to find the scaling
parameters based on the available datapoints. However, in practice, the determination of these scaling parameters is
found to be relatively inexpensive as compared with the function evaluations themselves, which are typically deter-
mined from expensive CFD simulations.

In future work, we will implement the present algorithm on additional test problems, and more computationally
efficient implementations of MAPS will be developed. Also, the use of MAPS for the problem of dimension reduction
in ∆-DOGS will be explored; that is, extending MAPS to aid in the exploration of f(x) over a reduced number of
parameters during intermediate steps of the optimization procedure.

Appendix: Comparison of direct & regularized approaches to find the θ parameters of
MAPS

We now provide a brief discussion about the inadequacy of the direct approach to find θ∗ when one of the scaling
parameters is much smaller that the other. Consider a model problem f(x1, x2) = ρ (x1 − 0.45)2 + (x2 − 0.45)2

the scaling parameter is found both using solution of (16) with BFGS (black curve) and solution of Algorithm 2 (blue
curve). It is observed that even in a simple 2D problem using the same datapoints shown in Fig 3, as one of the scaling
parameters approaches zero, the direct SQP with BFGS solution is not able to provide a correct scaling parameter and
converges to a local minimum. In contrast, the approach used in Algorithm 2, even for large ρ, does not deviate from
the optimum path of the solutions, and converges to a better solution. Algorithm 2 constantly initialize the solution of
Qλj (θ) for finding the θλk+1

and enables Algorithm 2 to converge to the appropriate scaling solution.
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Figure 10: Convergence history of the optimal design parameter’s values during the optimization. Top: lattice-based
∆-DOGS [3] with MAPS. Bottom: ∆-DOGS(C) [10] with NPS. (as it is reported in [29]). Dashed curves are the most
dominant parameters, x1 and x2 in both plots.
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Figure 11: The optimum hydrofiol design using lattice-based ∆-DOGS with MAPS compared with the reported
optimum foil in [29]. The dashed-blue is [29] and the solid line the optimum design reported in Table 2.
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Figure 12: The black dashed line is the solution of (15) using direct approach and blue dashed-line is the solution
of (15) using the iterative approach presented in Algorithm 2. Vertical axis is the smoothness criteria ‖w‖2, and the
horizontal axis is the variation in x1 direction respect to x2 for a sample problem f(x1, x2) = ρ (x1− 0.45)2 + (x2−
0.45)2 both in loglog scale. In the plot 1

ρ is plotted. It is observed that for direct SQP with BFGS (black dashed line)
converges to a local minimum of ‖w‖2 as ρ→ 0.
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